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1 Introduction

When searching on Google, Google outputs a list of websites. The websites at
the top of the page are accessed more frequently than websites near the bottom.

This idea of ordering websites is called Google PageRank. The orderering is
based on the likelihood of visiting each website. Links that are more likely to
be visited are placed higher than links that are less likely to be visited.

To implement PageRank, we create a matrix that predicts which link a
person will click given that a person is on a certain website. Then, we will be
able to find a steady-state vector that lists the destinations and the probability
of ending on them during a random walk. The most probable destinations will
be ranked highest.

This paper describes algorithms and computations used to create PageRank
and end with an implementation of PageRank. We will also test our PageRank
algorithm on smaller test cases.

We also will implement the Hyperlink-Induced Topic Search (HITS) algo-
rithm, which is another algorithm that rates web pages. In the HITS algorithm,
there is a notion of both Hubs and Authorities. A website has a high Hub score
if the website points to many credible websites. Similarly, a website has a high
Authority score if the website is pointed to by many credible websites. The
HITS algorithm produces a ranking for Hubs and Authorities based on how
many edges point to or from a node. Note that the ranking for Authorities in
HITS should be similar to the rankings for websites in the PageRank algorithm.

After testing with a small amount of websites, we will compare the results
of the HITS algorithm and PageRank.

2 Mathematical Background

The linear algebra background required to understand Google PageRank and
HITS are primarily matrices, row/column space, Markov matrices and steady-
state vectors. Some basic graph theory, including vertices, edges, indegrees,
outdegrees, and undirected/directed graphs, are needed to understand PageR-
ank and HITS.
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Matrices are a 2-dimensional array of elements. An n × m matrix consists
of n rows and m columns.

The row/column space is the span of the rows or columns of a particular
matrix.

For a given graph, a node N has indegree i if there are i other nodes that
point to N .

For a given graph, a node N has outdegree j if N points to j other nodes.
Markov matrices are matrices that have all non-negative entries, and the sum

of each column vector is equal to 1. These matrices are also called probability
matrices.

Adjacency matrices are often used to represent undirected graphs, where
there is a 1 in entry ij if there exists an edge between node i and node j and 0’s
everywhere else. These matrices are symmetric since if there is an edge between
nodes i and j, there will be an entry at both ij and ji.

After normalizing the columns of an adjacency matrix, the resulting matrix
becomes a Markov matrix. However, we assumed that the graph was undirected.
Representing a directed graph as a Markov matrix has issues. In a directed
graph, if a node has indegrees but no outdegrees, then there will be a zero
column in the probability matrix. Since all Markov matrices have columns that
sum to 1, the resulting matrix cannot be represented as a Markov matrix. This
issue will be addressed in the ”Algorithms and Computations” section.

If we are able to represent an undirected graph as a Markov matrix, then
we can find steady-state vectors, which is the long-term probability that the
system will be in each state. Steady-state vectors are a scalar multiple of the
eigenvector that corresponds to eigenvalue 1.

We can see that the steady-state is this eigenvector since all eigenvalues for
a Markov matrix are less than or equal to 1. Also note that for some n × n
Markov matrix A, Akx⃗ = c1λ

k
1 v⃗1 + c2λ

k
2 v⃗2 + ... for eigenvalues λ1, λ2, ... and

eigenvectors v⃗1, v⃗2, .... As k grows to infinity, for some 1 ≤ i ≤ n, λk
i → 0 if

λi < 1. Then, Akx⃗ approximates to c1λ
k
j v⃗j where λj = 1, so Akx⃗ ≈ c1v⃗j .

For PageRank, the entries in vj are websites, and since we only care about the
magnitudes of the entries relative to one another, the constant c1 is irrelevant.
The mathematics behind the PageRank relies on this long-term behavior since
we want to find where someone will end up after a long random walk. If we
find the long-term behavior of a random surfer, then we can find the most likely
website that the random surfer will end up at.

3 Algorithms and Computations

3.1 PageRank

As mentioned before, to generate a PageRank, we try to answer the following
question: if a random surfer randomly clicks on links, after a long period of
time, where will the random surfer end up?
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We cannot guarantee which website the random surfer will end up, but we
can give probabilities of which websites the random surfer will end up.

To create a matrix that predicts which links will be visited, we must make
the assumption that each link that is listed on a particular website has equal
probability of being visited.

Based on this assumption, if there are n websites, we can create an n × n
matrix (we will call this matrix P ) to predict which link a random surfer will
click.

In the matrix, we can index each website as an integer from 1 to n, and we
can represent the probability of going from index i to index j as the entry Pij .
Note that all entries on the diagonals are 0 since we assume that a person does
not stay on the same website.

For example, suppose we have the following graph, where each node repre-
sents a website.

We can create the matrix 
0 1

3
1
2 0 0

1
2 0 1

2 0 0
0 1

3 0 0 0
1
2

1
3 0 0 0

0 0 0 1 0


However, this naive representation has a problem. Since E does not point to

any nodes, after a long period of time of random walking, the random surfer will
always end up at node E, and the random surfer will not be able to move to any
other websites. This will make node E the highest value on our PageRank even
though realistically, node E is not very likely to be visited since it is pointed to
by only one node.

To solve this issue, we can assume that once the person reaches a dead end,
like website E, the person has an equal probability of visiting any website.

Thus, our new matrix becomes
0 1

3
1
2 0 1

5
1
2 0 1

2 0 1
5

0 1
3 0 0 1

5
1
2

1
3 0 0 1

5
0 0 0 1 1

5


Now, this matrix is a Markov matrix.
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Finding the steady-state vector of this matrix assumes that the random
surfer keeps clicking on links. However, we should also consider if the random
surfer decides to settle on a website. To solve this problem, we introduce a
variable called the damping factor.

The damping factor is the probability that a random surfer on the Internet
will eventually stop clicking on links on a given webpage and eventually click
on a random link. We will denote the damping factor as d.

Since d is the probability that the person stops and clicks on a random link,
1− d is the probability that the person continues clicking on links.

Thus, if we have n nodes, we can construct an n×n probability matrix P , as
we did above, and multiply it by the probability that people continue clicking
links. Then, we can add it to the probability that people settle on a page. The
probability that people settle on a page is represented by the matrix dK, where
K = 1

n1 (note that 1 is the n×n matrix where all entries are 1; this is because
we assume each website has equal probability of being clicked on).

Our matrix then becomes

G = (1− d)P + dK

Google typically uses d = 0.15, which is based on the frequency that people
use bookmarks, so for the rest of this project, we will use d = 0.15. Our matrix
then becomes:

G = 0.85P + 0.15K

We guarantee all entries are positive, so G is a Markov matrix. To compute
the steady-state vector, we could either find the eigenvector with eigenvalue 1
through computation or iteratively (we continuously multiply the probability
matrix). We choose to find the eigenvector iteratively since this algorithm is in
a lower complexity class and thus faster.

The method works by continuously multiplying our resulting vector by G
until the norm of our vector is less than some specified ϵ. Since we are trying
to find the long-term behavior of Gkx⃗, we can simply continue multiplying on
the left by G until we find a ”satisfactory” vector.

To determine if a vector is ”satisfactory,” we choose an ϵ that measures the
difference between the norms of the previous two vectors. Since Gkx⃗ converges
to some vector, after a long time, the vector will be changing by a very small
amount. If the ϵ is small enough, then our resulting vector will be approximately
equal to the actual steady-state vector.

3.2 HITS

The purpose of HITS is to rank websites based off of two factors, Authority and
Hub. Hub is defined as a measurement of the quality of a website’s outgoing
links. If a website were to rank to many credible sites(sites where lots of links
point to), the website is considered to have a high Hub.
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Authority is defined as a measurement of the number of websites that link
to a website. If a website were to have many links directed to it’s site from
credible sites(websites that have a high volume of inbound links), that website
has a high Authority score.

HITS works by iteratively updating the scores for Authority and Hub through
repeated matrix multiplication. The authority score is explicitly calculated by
summing the Hub score of its parents. The Hub score is explicitly calculated
by summing the Authority score of its children.

To calculate the Authority using matrices, we can initialize a vector v⃗0 =
(1, ..., 1), w⃗0 = (1, ..., 1) to be multiplied to our Adjacency matrix. After the
first iteration Av⃗0, the resulting vector w⃗1 is the sum of all websites linking to
the index i website.

w⃗1 =

(
n∑

i=1

A1i,

n∑
i=1

A2i, ..,

n∑
i=1

Ani

)
or w⃗ = Av⃗0

To calculate the Hub scores, we now need to take the vertical sum of the
columns of the Adjacency matrix. Thus, we can follow the same process for
authority but with AT to take column sums.

v⃗1 =

(
n∑

i=1

AT
1i,

n∑
i=1

AT
2i, ..,

n∑
i=1

AT
ni

)
or v⃗1 = AT w⃗0

On the second iteration, the w⃗ is now multiplied to AT w⃗ and v⃗ is now mul-
tiplied to Av⃗. This swap occurs because the new Authority and Hub rankings
now creates a weighted calculation for Authority and Hub. With the next it-
eration, sites with a greater Hub score which link to sites will be given greater
Authority. This intuitively makes sense as sites which credibly link to other
sites will promote the Authority of the sites it links to. Similarly, a site with
greater Authority, if linked to, promotes the Hub score of the website linking
to the Authority. Thus, as more iterations occur, the quality of the links are
increasingly considered as opposed to just the number of links.

This results in
Authority v⃗2 = ATAv⃗0

Hub w⃗2 = AAT w⃗0

After n iterations, the largest eigenvalue σ2
1 dominates, leading to the corre-

sponding eigenvector with Authority/Hub rankings.
This leads to two possible approaches where HITS can iterate through lan-

guage optimized matrix multiplications ATAv⃗o and ATAw⃗o or swap the vectors
each iteration. In modern languages like Julia, the Power Method is likely pre-
ferred as matrix multiplications are optimized as opposed to for loops.

Authority v⃗2n =
(
ATA

)n
v⃗0

Hub w⃗2n =
(
AAT

)n
w⃗0
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4 Coding and Algorithm Design Decisions

We will now divide the code into sections and briefly explain the purpose of
each section. To view the full code without interruptions, see the Appendix at
the end of the paper.

4.1 PageRank

We first import some packages that allow us to use linear algebra concepts, like
matrices.

using LinearAlgebra

using Distributions

Here is a small example of inputs that we can use:

websites = ["https://shp31337.github.io/",

"https://jamesn3.github.io/JamesN3/",

"https://www.amazon.com/", "https://www.desmos.com/"]

website_links = [["https://jamesn3.github.io/JamesN3/",

"https://www.amazon.com/", "https://www.desmos.com/"],

["https://shp31337.github.io/", "https://www.desmos.com/",

"https://www.amazon.com/"], [], ["https://www.amazon.com/"]]

In the first list, we have 4 websites, so our graph will include 4 nodes. Here
is a graph to help visualize the nodes and edges:

1: https://shp31337.github.io/
2: https://jamesn3.github.io/JamesN3/
3: https://www.amazon.com/
4: https://www.desmos.com/
In the second list, the first node (https://shp31337.github.io/) will point to

nodes 2, 3, and 4. The directed graph can thus be created by these two inputs.
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Note that the 3rd element in the list is an empty list, which denotes that the
3rd website does not point to any other node (some mathematicians call this a
sink).

The first list is parsed through so that we can represent each website as its
index in the list. For each list at index i in the second list, the websites inside
the respective list are nodes that website i will point to.

Implementation-wise, we can create a directed graph using adjacency matri-
ces.

To create a directed graph, we first create a dictionary so that each website
name is linked to its respective index. The dictionary takes in a website name
as an input and outputs the index each website is assigned to.

Now that we have assigned an index to each website, we create an adjacency
matrix to represent the edges.

The function list to adj creates such an n× n adjacency matrix. It iterates
through the website links list for every website and places a 1 at index ij if there
exists an edge from website i to j. All other entries contain 0.

A = zeros(length(websites), length(websites))

dict = Dict()

for i in 1:length(websites)

dict[websites[i]] = Int(i)

end

# Implement into Adjacency matrix

function list_to_adj(A, websites, website_links)

for i in 1:size(website_links, 1)

for k in 1:size(website_links[i], 1)

name = website_links[i][k]

A[dict[name], i] = Int(floor(1))

end

end

return Int.(A)

end

A = list_to_adj(A, websites, website_links)

Here is the adjacency matrix for our ongoing example:

display(A)

4 by 4 Matrix{Int64}:

0 1 0 0

1 0 0 0
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1 1 0 1

1 1 0 0

However, since we are dealing with directed graphs, we may run into the
problem discussed above: some columns may be zero columns if they have no
outdegrees. Thus, we create a copy of our adjacency matrix, and we iterate
through every column in the adjacency matrix and check that every entry in
the column is 0 or not. If we find a zero column, then we change all entries in
that column to 1

n .

A_adjusted = copy(A)

A_adjusted = float.(A_adjusted)

for i in 1:size(A, 1)

good = false

for k in 1:size(A, 1)

if (A[k,i] != 0)

good = true

end

end

if (good == false)

for k in 1:size(A, 1)

A_adjusted[k,i] = 1/ (size(A, 1))

end

end

end

In our example, after adjusting for zero columns, we get the following adja-
cency matrix:

display(A_adjusted)

4 by 4 Matrix{Float64}:

0.0 1.0 0.25 0.0

1.0 0.0 0.25 0.0

1.0 1.0 0.25 1.0

1.0 1.0 0.25 0.0

Now that we have all non-zero columns, we want to normalize all columns
to the l1 norm so that they become Markov matrices.

# filled adjacency matrix with norm
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sums = sum(A_adjusted, dims=1)

# A[:, 1]/5

D = zeros(size(A_adjusted, 1), size(A_adjusted, 1))

M = zeros(size(A_adjusted, 1), size(A_adjusted, 1))

for i in 1:size(A_adjusted, 1)

D[i, i] = sums[i]

end

M = A_adjusted*inv(D)

Here is our example matrix normalized:

4 by 4 Matrix{Float64}:

0.0 0.333333 0.25 0.0

0.333333 0.0 0.25 0.0

0.333333 0.333333 0.25 1.0

0.333333 0.333333 0.25 0.0

Now, we implement the Power Method. We first create the matrix G (as
described in the ”Algorithms and Computations” section) and set it equal to
trans. Then, we multiply the resulting vector v by trans continuously until we
get that the difference in norms is less than ϵ.

Also note that the input vector does not matter since the long-term behavior
will always converge to the same vector.

function eigen_steady_state(M, num_iters, d, epsilon, l_norm)

trans = zeros(size(M, 1), size(M, 1))

trans = (1-d)M + (d/size(M, 1)) * ones(size(M, 1), size(M, 1))

# return matrix with count for each site

v = ones(size(M, 1))

for i in 1:num_iters

v_last = v

v = trans*v

if norm(v - v_last, l_norm) < epsilon

return v

end

end

return v

end
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Now, we are ready to implement the random walk. We simply call our
steady state function and rank the websites based on which value in v (the
steady-state vector) is larger.

function randomwalk(M, num_iters, d, epsilon, l_norm)

v = eigen_steady_state(M, num_iters, d, epsilon, l_norm)

v_copy = copy(v)

v_ranking = zeros(size(M, 1))

for i in 1:length(v_copy)

tuple_v = findmax(v_copy)

v_ranking[i] = Int(tuple_v[2])

v_copy[tuple_v[2]] = -10

end

return v_ranking

end

For our ongoing example, here are the website indices in order.

results = randomwalk(M, 1000, .15, 0.01, 2)

4-element Vector{Float64}:

3.0

4.0

1.0

2.0

Since we want to output websites in the end, we finish the algorithm by
converting the indices back into websites by using our dictionary.

function arr_2_string(results, websites, dict)

final_ranking = copy(websites)

count = 1

for num in results

for tuple in dict

if (tuple[2] == num)

final_ranking[count] = tuple[1]

end

end

count += 1

end

return final_ranking

end
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Thus, we get the finalized order for our PageRank Algorithm:

display(arr_2_string(results, websites, dict))

4-element Vector{String}:

"https://www.amazon.com/"

"https://www.desmos.com/"

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"

4.2 HITS

In the HITS algorithm, we use the adjacency matrix we generated in PageR-
ank. We simply implement the algorithm described in the ”Algorithms and
Computations” section.

function HITS(A, num_iters)

x = ones(size(A, 1)) / size(A, 1)

y = ones(size(A, 1)) / size(A, 1)

for i in 1:num_iters

x2 = A'*y

y2 = A*x

x = x2 / norm(x2)

y = y2 / norm(y2)

end

x_copy = copy(x)

y_copy = copy(y)

x_ranking = zeros(length(x_copy))

y_ranking = zeros(length(y_copy))

for i in 1:length(x_copy)

tuple_x = findmax(x_copy)

x_ranking[i] = Int(tuple_x[2])

x_copy[tuple_x[2]] = -10

tuple_y = findmax(y_copy)

y_ranking[i] = Int(tuple_y[2])

y_copy[tuple_y[2]] = -10

end

# x is authorities

#y is rankings

return y_ranking, x_ranking

end
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For our example, we list out the Authorities and Hubs in order of highest to
lowest ranking.

authority, hub = HITS(A, 50)

println("Authority in order\n")

display(arr_2_string(authority, websites, dict))

println("Hub in order\n")

display(arr_2_string(hub, websites, dict))

Authority in order:

4-element Vector{String}:

"https://www.amazon.com/"

"https://www.desmos.com/"

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"

Hub in order:

4-element Vector{String}:

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"

"https://www.desmos.com/"

"https://www.amazon.com/"

4.3 Further Exploration into Lp spaces

The purpose is to compare the convergence rate for the L1 norm and L2 norm
when doing RandomWalk in PageRank. This code tests values of ϵ and how
many iterations of our randomwalk code is required to terminate.

arr = []

for i in 1:200

push!(arr, eigen_steady_state_iterations(M, 100000000000000,

.15, i/1000, 2))

end

Plots.plot(arr, xlabel = "epsilon in thousandths",

ylabel = "Randomwalk Iterations")

#.001 increments of epsilon
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Figure 1: At low ϵ, (less than .025), the convergence rate in terms of
iterations is seen to dramatically change, while when epsilon increases, the rate
of convergence is increasingly less affected.

arr = []

for i in 1:200

push!(arr, eigen_steady_state_iterations(M, 100000000000000,

.15, i/1000, 1))

end

Plots.plot(arr, xlabel = "epsilon in thousandths",

ylabel = "Randomwalk Iterations")

Figure 2: At low ϵ, (less than .025), the convergence rate in terms of
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iterations is seen to dramatically change, while when epsilon increases, the rate
of convergence is increasingly less affected.

Conclusion: The rate of convergence for small datasets is rather insignif-
icant, so the use of larger datasets will be required. Our findings do match a
study from IIT Jodhpur which prove l2 norms converge faster than l1 norms.

5 Results and Interpretation of Computations

General Results:
First we will analyze our small example.
Here is a reminder of the graph to help us visualize the small example easily:

Index Correspondence:
1: https://shp31337.github.io/

2: https://jamesn3.github.io/JamesN3/
3: https://www.amazon.com/
4: https://www.desmos.com/

As shown in the graphic, node 3 is pointed to very often, so intuitively, node
3 should be ranked the highest. Also, both nodes 1 and 2 are pointed to by only
one other node, so intuitively, these two nodes should be ranked lower.

Our final ranking using PageRank was 3, 4, 1, 2, and our final Authority
ranking using HITS was 3, 4, 1, 2 as well. Note that the Authority ranking from
HITS matches our ranking from PageRank. Our rankings match our intuition

Also, in the HITS algorithm, we have the Hub ranking as 1, 2, 4, 3. Both
nodes 1 and 2 point to 3 other nodes, and node 3 points to 0 nodes. Thus, the
Hub ranking also makes sense.

Both HITS and PageRank seem to work on examples with just a few nodes.
With smaller examples, it seems impossible to determine if one algorithm is
more efficient or accurate than the other. However, HITS provides more infor-
mation since it outputs both a list of Hubs and Authorities. This information
could potentially be used to implement an algorithm to rank credibility of web-
sites since a higher Hub score usually correlates with higher credibility. Since
the HITS algorithm give slightly more information, the HITS algorithm is more
preferable.
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Interesting Finding:
An interesting result from the power method involves the implementation of Ju-
lia. It was found that the runtime from stopping once convergence was achieved
was slower than doing 10000000 iterations (a potentially larger number of it-
erations) of matrix multiplication without convergence. The following runtime
was comapred with the two functions

1.2 second runtime with convergence

eigen_steady_state(M, 10000000, .15, 0.01, 2)

0.4 second runtime without convergence and a predetermined number of itera-
tions

eigen_steady_state2(M, 10000000, .15, 0.01, 2)

This can be inferred to be a result of Julia’s optimization as opposed to a
difference in the number of iterations. Thus, consideration of language opti-
mzations must be considered when designing efficent PageRank algorithms for
large datasets.

6 Conclusion

In this project, we implemented Google’s PageRank algorithm and the HITS
algorithm using Markov chains. Although we were not able to find which algo-
rithm was more efficient and accurate using small test cases, we deduced that
both algorithms produced logically sound results for small examples.

With a larger graph of websites, we hypothesize that the results of HITS and
PageRank will still be similar since both algorithms correlate with indegrees and
outdegrees. Also, since our code finds the steady-state vector iteratively rather
than algebraically, our algorithm is more time-efficient, so there should not be
many issues with regard to runtime.

Another potentital future research topic includes optimizing Google PageR-
ank when nodes have different weights (if some websites are more likely to be
visited). We suspect that the probability matrix will have to be modified, but
the algorithm to find the steady-state vector will remain the same.
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7 Appendix

Full Code:

using LinearAlgebra

using Distributions

websites = ["https://shp31337.github.io/",

"https://jamesn3.github.io/JamesN3/",

"https://www.amazon.com/", "https://www.desmos.com/"]

website_links = [["https://jamesn3.github.io/JamesN3/",

"https://www.amazon.com/", "https://www.desmos.com/"],

["https://shp31337.github.io/", "https://www.desmos.com/",

"https://www.amazon.com/"], [], ["https://www.amazon.com/"]]

A = zeros(length(websites), length(websites))

dict = Dict()

for i in 1:length(websites)

dict[websites[i]] = Int(i)

end

# Implement into Adjacency matrix

function list_to_adj(A, websites, website_links)

for i in 1:size(website_links, 1)

for k in 1:size(website_links[i], 1)

name = website_links[i][k]

A[dict[name], i] = Int(floor(1))

end

end

return Int.(A)

end

A = list_to_adj(A, websites, website_links)

display(A)

4 by 4 Matrix{Int64}:

0 1 0 0

1 0 0 0

1 1 0 1

1 1 0 0

A_adjusted = copy(A)

A_adjusted = float.(A_adjusted)
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for i in 1:size(A, 1)

good = false

for k in 1:size(A, 1)

if (A[k,i] != 0)

good = true

end

end

if (good == false)

for k in 1:size(A, 1)

A_adjusted[k,i] = 1/ (size(A, 1))

end

end

end

display(A_adjusted)

4 by 4 Matrix{Float64}:

0.0 1.0 0.25 0.0

1.0 0.0 0.25 0.0

1.0 1.0 0.25 1.0

1.0 1.0 0.25 0.0

# filled adjacency matrix with norm

sums = sum(A_adjusted, dims=1)

# A[:, 1]/5

D = zeros(size(A_adjusted, 1), size(A_adjusted, 1))

M = zeros(size(A_adjusted, 1), size(A_adjusted, 1))

for i in 1:size(A_adjusted, 1)

D[i, i] = sums[i]

end

M = A_adjusted*inv(D)

4 by 4 Matrix{Float64}:

0.0 0.333333 0.25 0.0

0.333333 0.0 0.25 0.0

0.333333 0.333333 0.25 1.0

0.333333 0.333333 0.25 0.0

function eigen_steady_state(M, num_iters, d, epsilon, l_norm)

trans = zeros(size(M, 1), size(M, 1))

trans = (1-d)M + (d/size(M, 1)) * ones(size(M, 1), size(M, 1))

# return matrix with count for each site

v = ones(size(M, 1))
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for i in 1:num_iters

v_last = v

v = trans*v

if norm(v - v_last, l_norm) < epsilon

return v

end

end

return v

end

function randomwalk(M, num_iters, d, epsilon, l_norm)

v = eigen_steady_state(M, num_iters, d, epsilon, l_norm)

v_copy = copy(v)

v_ranking = zeros(size(M, 1))

for i in 1:length(v_copy)

tuple_v = findmax(v_copy)

v_ranking[i] = Int(tuple_v[2])

v_copy[tuple_v[2]] = -10

end

return v_ranking

end

results = randomwalk(M, 1000, .15, 0.01, 2)

4-element Vector{Float64}:

3.0

4.0

1.0

2.0

function arr_2_string(results, websites, dict)

final_ranking = copy(websites)

count = 1

for num in results

for tuple in dict

if (tuple[2] == num)

final_ranking[count] = tuple[1]

end

end

count += 1

end

return final_ranking

end

display(arr_2_string(results, websites, dict))
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4-element Vector{String}:

"https://www.amazon.com/"

"https://www.desmos.com/"

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"

function HITS(A, num_iters)

x = ones(size(A, 1)) / size(A, 1)

y = ones(size(A, 1)) / size(A, 1)

for i in 1:num_iters

x2 = A'*y

y2 = A*x

x = x2 / norm(x2)

y = y2 / norm(y2)

end

x_copy = copy(x)

y_copy = copy(y)

x_ranking = zeros(length(x_copy))

y_ranking = zeros(length(y_copy))

for i in 1:length(x_copy)

tuple_x = findmax(x_copy)

x_ranking[i] = Int(tuple_x[2])

x_copy[tuple_x[2]] = -10

tuple_y = findmax(y_copy)

y_ranking[i] = Int(tuple_y[2])

y_copy[tuple_y[2]] = -10

end

# x is authorities

#y is rankings

return y_ranking, x_ranking

end

authority, hub = HITS(A, 50)

println("Authority in order\n")

display(arr_2_string(authority, websites, dict))

println("Hub in order\n")

display(arr_2_string(hub, websites, dict))

Authority in order:

4-element Vector{String}:

"https://www.amazon.com/"

"https://www.desmos.com/"

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"
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Hub in order:

4-element Vector{String}:

"https://shp31337.github.io/"

"https://jamesn3.github.io/JamesN3/"

"https://www.desmos.com/"

"https://www.amazon.com/"

arr = []

for i in 1:200

push!(arr, eigen_steady_state_iterations(M, 100000000000000,

.15, i/1000, 2))

end

Plots.plot(arr, xlabel = "epsilon in thousandths",

ylabel = "Randomwalk Iterations")

#.001 increments of epsilon

arr = []

for i in 1:200

push!(arr, eigen_steady_state_iterations(M, 100000000000000,

.15, i/1000, 1))

end

Plots.plot(arr, xlabel = "epsilon in thousandths",

ylabel = "Randomwalk Iterations")
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